


# Muography: principle & applications



## **The ScanPyramids project**



S. Procureur CEA Paris-Saclay

Ecole Joliot-Curie, Seminar, 24/09/2017

DE LA RECHERCHE À L'INDUSTRIE









### **Muography: principle & applications**

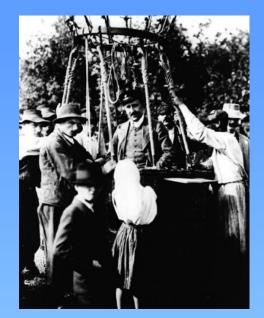
- Cosmic muons
  - Cosmic rays
  - Showers
  - Muon and muon flux
- Muography principles
  - Muon absorption & transmission
  - Muon deviation (or scattering)
  - Muon metrology
- Muon imaging technologies
  - Specificities
  - Detection techniques
- Selected Applications
  - Volcanology
  - Archeology
  - Nuclear waste and reactor
  - Homeland security

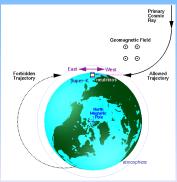
### The ScanPyramids project

- Instrumentation
  - Irfu technology
  - Miniaturization
- Telescope prototype
  - Water tower experiment
  - Performance: static & dynamic
- 1<sup>st</sup> mission on Khufu
  - Preparation & tests
  - Installation
  - Performance
  - Results
- 2<sup>nd</sup> mission
- Perspectives

## **COSMIC RAYS - HISTORY**




- $\rightarrow$  Mystery for a very long time
  - Effects known since 18<sup>th</sup> century (electroscope discharges)
  - Question of the source (from Earth or extra-terrestrial)
  - Wulf experiment on Eiffel Tower (1910)


 $\rightarrow$  2 decisive sets of experiments in 1912

- · Hess with balloons to measure electroscope discharges
- · Pacini with sea measurements (above and under )

→ Still many years to understand its composition

- « Birth cry of atoms » theory of Millikan (cosmic « rays »)
- Latitude effect measured by Compton (1933)
- East-West effect measured by Alvarez, Compton and Rossi (1933





## Cosmic RAYS - COMPOSITION



#### $\rightarrow$ High energy particles produced in the Universe

- Solar flares (lowest energy)
- Supernovae
   AGN



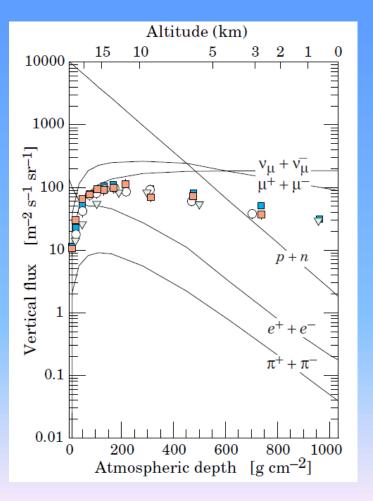
$$I_{N}(E) \approx 1.8 \times 10^{4} \left(\frac{E}{\text{GeV}}\right)^{\alpha} \frac{\text{nucleons}}{\text{m}^{2} \text{ s sr GeV}}$$

$$\rightarrow ~90\% \text{ of protons and } ~9\% \text{ of He}$$

$$\rightarrow \text{ Measured up to } 3.10^{8} \text{ TeV}$$

$$\Leftrightarrow \text{ tennis ball at } 150 \text{ km/h}$$

$$\rightarrow \text{ Flux anti-correlated with solar activities}}$$


### **COSMIC RAYS - SHOWERS**



#### → Produce a cascade of reactions when entering the Earth's atmosphere

• « cosmic showers »

• Pions, kaons, electrons, muons,...



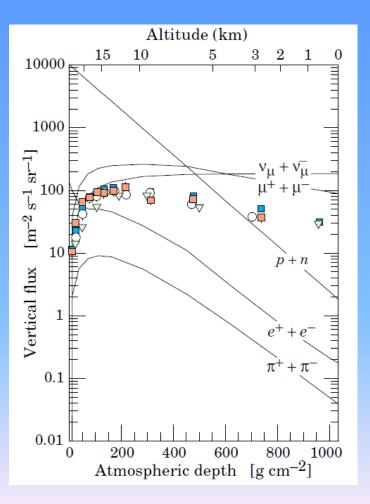
$$\pi^- 
ightarrow \mu^- + \bar{\nu_\mu}$$

BR: 99.99%

$$K \rightarrow \mu$$
 +

17

BR: 63.5%


 $\rightarrow$  why no decay into electrons (lighter)??

### **COSMIC RAYS - SHOWERS**

# - Infa

#### → Produce a cascade of reactions when entering the Earth's atmosphere

- « cosmic showers »
- Pions, kaons, electrons, muons,...



$$\pi^- 
ightarrow \mu^- + \bar{\nu_\mu}$$

BR: 99.99%

$$K^- \to \mu^- + \bar{\nu_{\mu}}$$

BR: 63.5%

 $\rightarrow$  why no decay into electrons (lighter)??

$$R_{\pi} = (m_e/m_{\mu})^2 \left(rac{m_{\pi}^2 - m_e^2}{m_{\pi}^2 - m_{\mu}^2}
ight)^2 = 1.283 imes 10^{-4}$$

 $\rightarrow$  helicity effect!



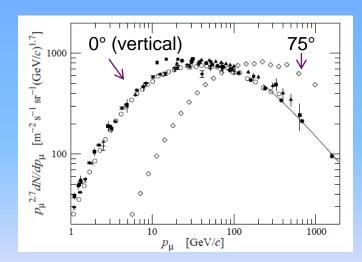


- $\rightarrow$  Muon is an unstable particle  $\tau = 2,2\mu s$ 
  - At speed of light, decay after  $c\tau \cong 660 m...?$





- $\rightarrow$  Muon is an unstable particle  $\tau = 2,2\mu s$ 
  - At speed of light, decay after  $c\tau \cong 660 m...?$
  - ... but time dilatation allows it to travel along much longer distances


#### → Muons combine 3 advantages compared to other particles produced in cosmic showers

- Larger lifetime vs other unstable particles
- Larger mass compared to electrons
- No hadronic interactions (like p, n)

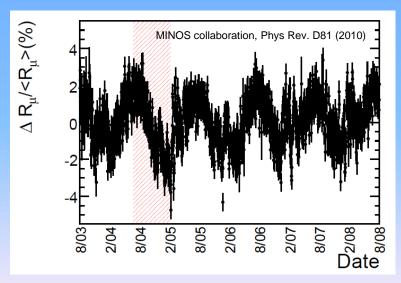
#### $\rightarrow$ Mean muon flux

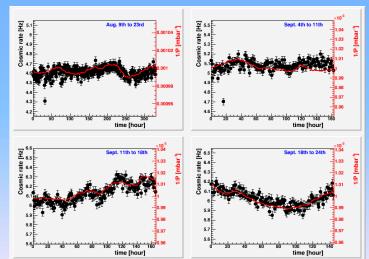
$$\frac{dN}{dEd\Omega} = \frac{0.14E^{-2.7}}{\text{cm}^2 \text{ s sr GeV}} \times \left(\frac{1}{1 + \frac{1.1 \times E \cos\theta}{115 \text{ GeV}}} + \frac{0.054}{1 + \frac{1.1 \times E \cos\theta}{850 \text{ GeV}}}\right)$$

Typically 1 / min / cm<sup>2</sup>
 Mean energy 4 Ge\



• Angular distribution close to cos<sup>20</sup>



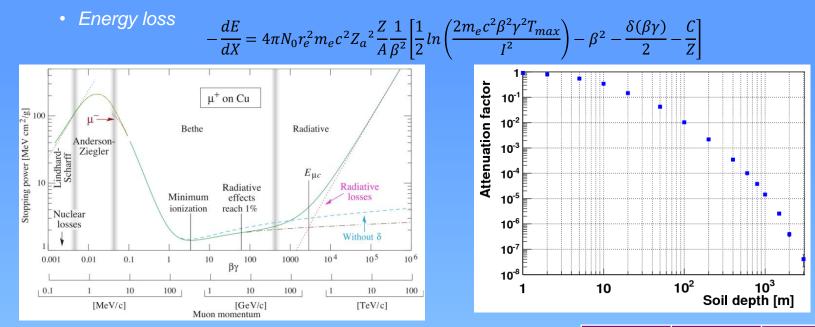


### **MUONS RATE VARIATIONS**



#### $\rightarrow$ Several factors influence the muon rate

- Latitude effect (more muons close to the poles)
- East-West effect (more muons in the West direction)
- Solar activity (less muons during high activity, 11 year cycle)
- High atmosphere temperature (more muons during summer)
- Atmospheric pressure (more muons if low pressure)






#### DE LA RECHERCHE À L'INDUSTRI

### **MUON INTERACTIONS WITH MATTER**

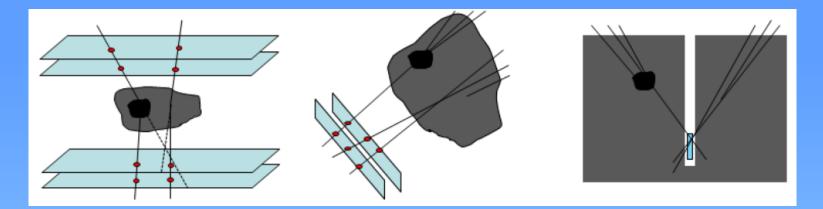


#### → Electromagnetic interactions

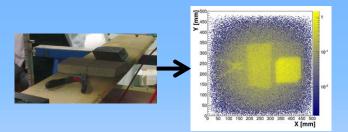


#### • Multiple scattering



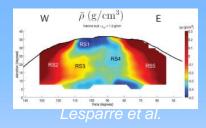

| $\sigma = \frac{13.6 \text{MeV} (x)}{\beta pc} \sqrt{\frac{x}{X_0}} + 0.038 \log(x/X_0) ] \approx \frac{13.6 \text{MeV}/c}{p} \sqrt{\frac{x}{X_0}}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $X_0 = \frac{716.4(\text{g/cm}^2)}{\rho} \frac{A}{Z(Z+1)\log(287/\sqrt{Z})}$                                                                        |

| Material | Thickness | heta (deg) | P <sub>absorption</sub> |
|----------|-----------|------------|-------------------------|
| Air      | 100 m     | 0.094      | 0.78%                   |
| Lead     | 10 cm     | 1.01       | 2.9%                    |
| Water    | 1 m       | 0.35       | 4.2%                    |
| Soil     | 100 m     |            | 99%                     |






#### $\rightarrow$ These effects can be used to probe/image matter




**Deviation** 



- 3D imaging (diffusion point)
- ρ and Z measurement (deviation angle)
- « Fast » (from minutes to days)

#### **Transmission (& Absorption)**



- 2D imaging (muon flux
- Opacity measurement
- Slow (from days to months)
- → Many applications: volcanology, archeology, civil engineering, nuclear reactor monitoring EJC Seminar | 24/09/2017 | 11

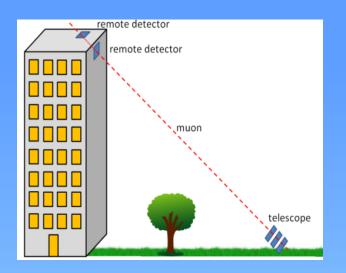


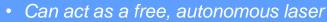


- $\rightarrow$  Deviation adapted to small objects / Transmission to large ones
- $\rightarrow$  Deviation adapted to thin objects / Transmission to thick ones

• Transition between the 2 methods around 0.5-2 m

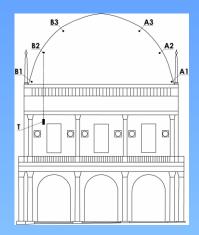
Absorption can be competitive in this region
 2 min
 10 min
 1 h
 1

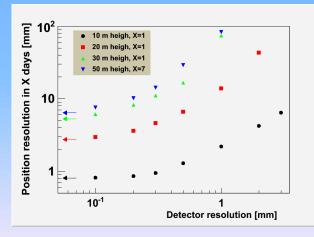



### MUON METROLOGY




#### → Muons travel in average along straight lines






• Works even in case of obstacles (roof, wall, tree, ground, etc.)

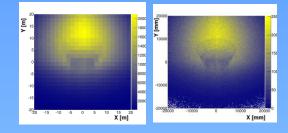






- Requires extremely good spatial resolution
- Practically infinite resolution for long term monitoring




### **MUON IMAGING TECHNOLOGIES**



- $\rightarrow$  Muons are charged particles, means easy to detect...
- $\rightarrow$  ... but muography usually imposes specific, contradictory requirements
  - Large area







• Large acceptance

*e.g.* large structures, underground

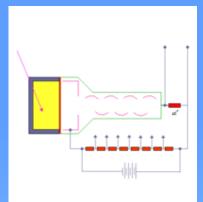
Robustness



• Autonomy



• Cost!

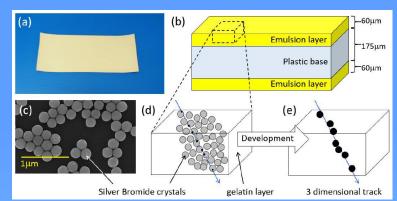

#### → historically 3 different technologies:

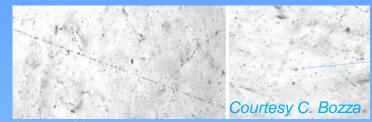
- Scintillators
- Emulsions
- Gaseous detectors

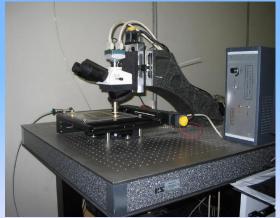
### **MUON IMAGING TECHNOLOGIES: SCINTILLATORS**



- $\rightarrow$  perhaps the most robust detector in particle physics
- $\rightarrow$  Spatial resolution
- Limited (~ 1 cm), determined by scintillator size
- $\rightarrow$  Direct imaging
- Online (electronics), dynamics possible
- $\rightarrow$  Sensitivity to environmental conditions
  - *~ none*
- → Electric consumption
  - Electric: low (a few (tens of) W)
- → Most common use in muography
  - Volcanology
  - Homeland security (!)



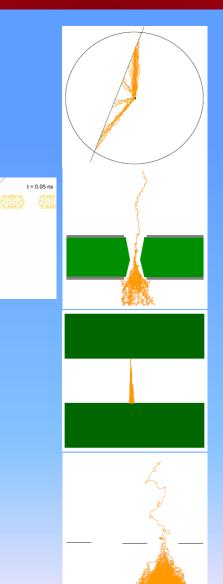


#### DE LA RECHERCHE À L'INDUSTR


### **MUON IMAGING TECHNOLOGIES: EMULSIONS**



- $\rightarrow$  perhaps the most precise detector in particle physics
- $\rightarrow$  Spatial resolution
- Outstanding ( <1 micron)
- $\rightarrow$  Direct imaging
- Not possible (no dynamic)
- $\rightarrow$  Sensitivity to environmental conditions
  - Emulsions degrade at high temperature (~>25°C)
- $\rightarrow$  Electric consumption
  - None (passive system)
- → Most common use in muography
  - Volcanology
  - Archeology



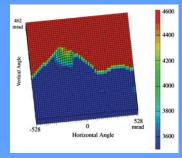


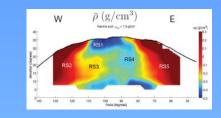



### **MUON IMAGING TECHNOLOGIES: GAS DETECTORS**



- $\rightarrow$  perhaps the most versatile detector in particle physics
- $\rightarrow$  Spatial resolution
- Good( ~ 0.1 1 mm)
- $\rightarrow$  Direct imaging
- Online (electronics), dynamics possible
- → Sensitivity to environmental conditions
  - Gain variations with T and P
- $\rightarrow$  Consumption
- Electric: low (a few tens of W) + gas
- → Most common use in muography
  - Homeland security
  - Volcanology
  - Archeology





### **SELECTED APPLICATIONS: VOLCANOLOGY**



#### $\rightarrow$ drove the muography renaissance at the end of the 1990s

- First in Japan (Tanaka & Nagamine)
- Later in France (Diaphane, TomuVol), Italy (Mu-Ray), etc.





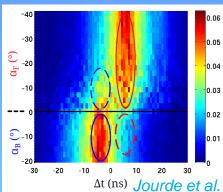
#### → main goal: better understand the inner structure of volcanoes, and study their dynamics

Detector

- Complementary to other techniques (resistivity, micro-gravimmetry)
- Harsh conditions
- Requires very long acquisitions

### **SELECTED APPLICATIONS: VOLCANOLOGY**



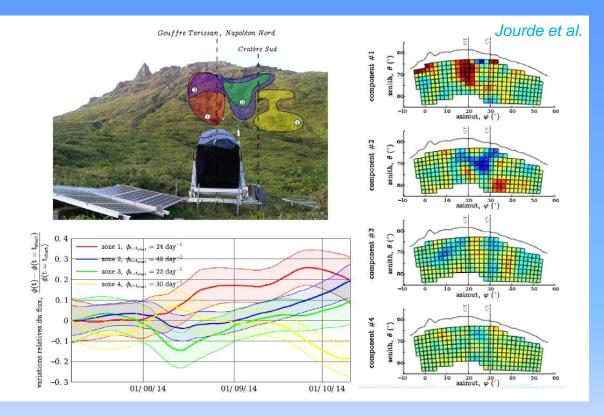

- many difficulties were identified during the early years
  - Accidental coincidence from 2 muons of a single shower
    - **Requires at least 3 planes of detection**

- Upward muon flux in some configurations
  - Excellent timing required...
    - ... or precise simulation

0.02 0.01 -30 -20 -10 0 20 Δt (ns) Jourde et al.

- Can be lowered with e.g. Lead layer...
- ... or estimated by simulation (very recent!)

Gomez et al.








#### $\rightarrow$ Dynamics possible

• Density variations measured, correlated with external activity (fumerolle)



- ~ 10 volcanoes studied, some being continuously monitored
- Graal: anticipate big activities of volcanoes

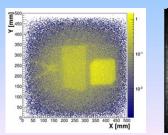
### **SELECTED APPLICATIONS: ARCHEOLOGY**

#### → Pyramids

- Historic experiment by Alvarez on Khafre pyramid (1967!)
- Experiment in Sun pyramid at Teotihuacan (2011-2013)

#### $\rightarrow$ Tumuli and necropols

• Complementarity with other measurements (resistivity)


h ~ 22 m

• Main difficulty: close to the horizon, very few muons



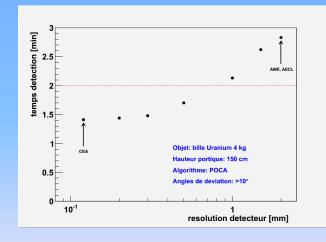
### $\rightarrow$ Cavern findings

- Lascaux, Qumran, etc.
- → Preservation



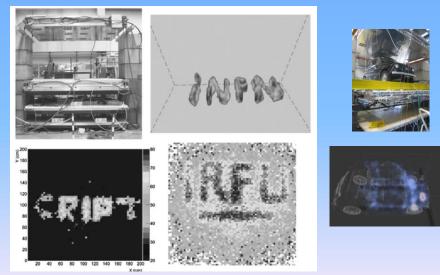





### **SELECTED APPLICATIONS: HOMELAND SECURITY**

#### → Detect contraband nuclear material (nuclear activity or « dirty » bombs)

- Initiated by Los Alamos group in 2003
- Very first commercial muon portal in 2012 (Decision Science)
- ... but no more scanners so far (industrialization issue)


#### → Spatial resolution & large area are curcial

• DNDO criteria: 4 kg of U in <2 min!



#### momentum measurements help!

### ightarrow Many projects in the world









### **SELECTED APPLICATIONS: NUCLEAR REACTOR**



#### → Interest either after catastrophic event or prior to reactor dismantling

- · Probe areas inaccessible otherwise
- Want to check integrity of structures before dismantling (and check old plans!)

#### → Tests started with TEPCO company after Fukushima accident

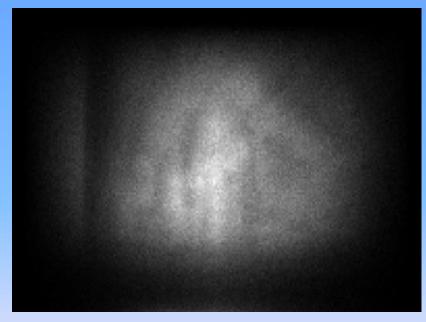
- So far only in transmission
- Limited communication...





#### But this is only a simulation!

### **SELECTED APPLICATIONS: NUCLEAR REACTOR**




#### → Interest either after catastrophic event or prior to reactor dismantling

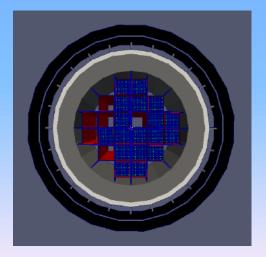
- · Probe areas inaccessible otherwise
- Want to check integrity of structures before dismantling (and check old plans!)

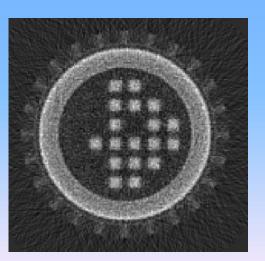
#### → Tests started with TEPCO company after Fukushima accident

- So far only in transmission
- Limited communication...






Real data


→ Suggests that nuclear fuel has leaked
 → Deviation measurements should start soon



#### $\rightarrow$ Characterization of (old) storage containers with spent fuel

- Not always precisely documented
- Heavily shielded (neutron or gamma probing difficult)
- $\rightarrow$  Typical configuration for deviation muography
- $\rightarrow$  Still prospective, essentially simulations so far
  - Data with just 2 planes, difficult localization of the compartments
- $\rightarrow$  Can use medical imaging algorithms with surrounding detectors

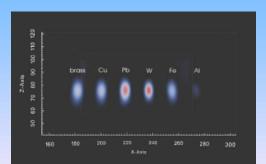






## PERSPECTIVES (1/2)




#### → Many more fields of applications... known and unknown

• Underground exploration (soil geology, mining, borehole)

CO2/fuel geological storage & monitoring



• Civil engineering















DE LA RECHERCHE À L'INDUSTRIE



### **SCANPYRAMIDS**











#### International collaboration

- $\rightarrow$  coordinated by HIP Institute (M. Tayoubi) and Cairo Engineering Faculty (H. Helal)
- $\rightarrow$  Under the authority of Ministry of Egyptian Antiquities

### Goal: scan 4 big pyramids of the IV<sup>th</sup> dynasty





### THE SCANPYRAMIDS PROJECT

## **SCAN** Pyramid

()

Infra-rouge Thermiou

ΗİΡ



### Several innovating technologies:

→ thermography (weakly penetrating): Laval University

Drones (surface reconstitution): Cairo University

→ Muography (deeply penetrating): Nagoya University, KEK, CEA

Nagoya & KEK inside, **CEA-Irfu outside** 

 $\Rightarrow$  Extreme conditions!







 $\rightarrow$  Photogrammetry & 3D models: Emissive

 $\rightarrow$  + real time simulation

#### DE LA RECHERCHE À L'INDUSTR

## IRFU TECHNOLOGY (1/2)



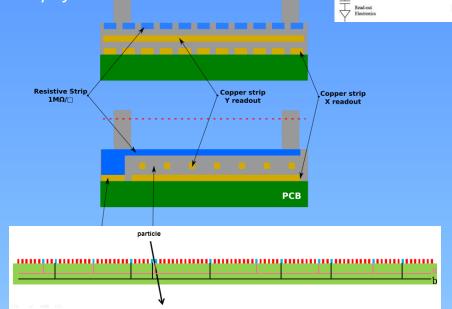
Drift Electro

onizing particl

Drift gar

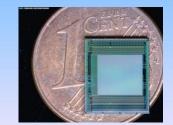
128 .....

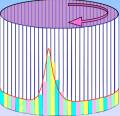
#### $\rightarrow$ relies on Micromegas detector (1996)


- Micro Pattern Gaseous Detector (MPGD)
- Good spatial resolution (~ 100 microns)
- Extensively used in particle & nuclear physics

#### $\rightarrow$ with resistive technology (2010)

- Suppression of discharges
- Higher gain
- Better stability / robustness


#### $\rightarrow$ and genetic multiplexing (2012)


- Use redundancy of signal
- Much less electronics channels



#### $\rightarrow$ and DREAM electronics (2013)

- Deadtime less asic, continuous reading
- Adapted to large capacitance detectors





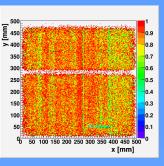
= - 600 1

E - 500 V/c

= - 350 \

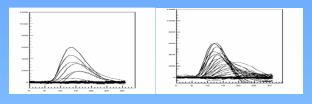
E = 40 kV/cr

#### DE LA RECHERCHE À L'INDUSTR


## **IRFU TECHNOLOGY (2/2)**

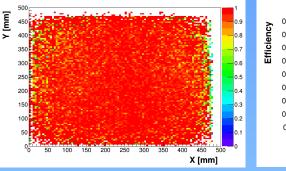


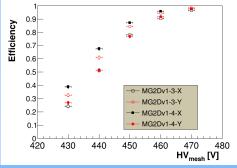
#### $\rightarrow$ 2013: 1<sup>st</sup> 1D multiplexed prototype


- 61 channels for 1024 strips
- ~90% 1D efficiency






### $\rightarrow$ 2014: 2D resistive detectors (MG2D-v1)


• ~95% 2D efficiency



#### $\rightarrow$ 2015: improved version (MG2D-v2)

- Better shielding (N~2600 e-, S/N~60-100)
- 61x17=1037 strips
- 1.5 cm drift gap (μ-TPC)
- ~97% 2D efficiency
- Extended plateau









### **TOWARD MINIATURIZATION, SAFETY & AUTONOMY**



#### → Front end electronics: 1 card (FEU) for 4 detectors

- Self triggering option
- Connected to detectors via long, coaxial Hitachi cables (2m)



### → Nano-PC: 1 Hummingboard

- ARM technology (smartphone)
- Linux
- Acquisition software & monitoring

### → High voltage power supply

- CAEN miniature modules (12V, <0.5 W)
- Implemented in a ad hoc card controlled by the nano-PC

### → General power supply

- 35 W of overall consumption!
- 220 V or solar panels with battery
- $\rightarrow$  3G connexion
- $\rightarrow$  non flamable gas
  - Ar-Iso-CF4 (95-2-3)











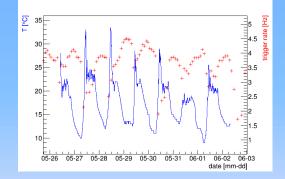
#### DE LA RECHERCHE À L'INDUSTRIE

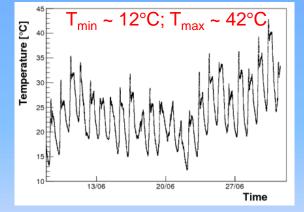
### **TEST OF THE FIRST TELESCOPE PROTOTYPE**



#### $\rightarrow$ Test @ Saclay on water tower in 2015





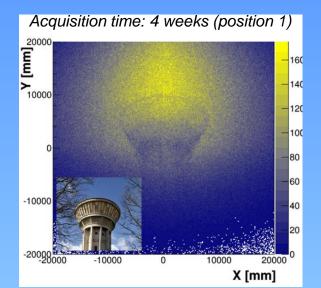

#### → Many lessons learnt...

- Have to adjust the high voltage with T and P variations
- · Issues with noise & grounding
- Solar panels require sun!!

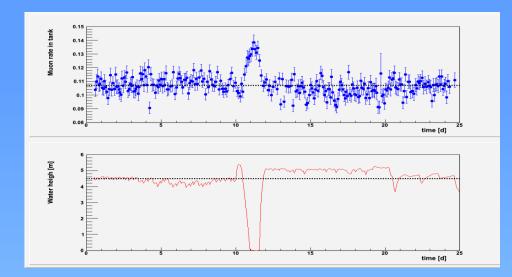


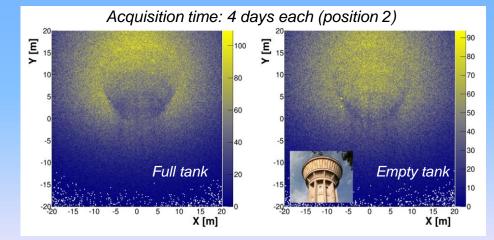





→ But it works!

#### OF LA RECHERCHE À L'INDUSTI

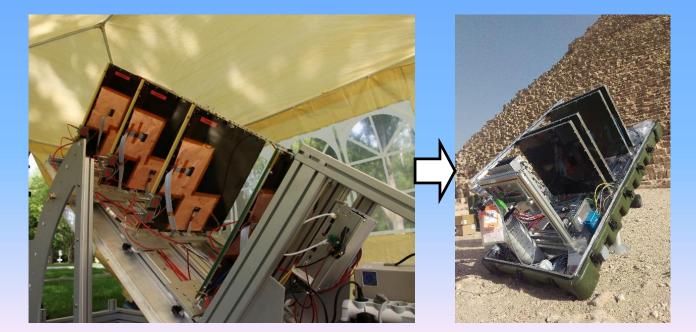

### **TEST OF THE FIRST TELESCOPE PROTOTYPE**




→ Static imaging



#### $\rightarrow$ Dynamic imaging






### FROM WATER TOWER TO KHUFU

- Telescopes :  $1 \rightarrow 3$
- Chassis  $\rightarrow$  fly-case
- Detectors: prototype (Cern)  $\rightarrow$  serial (Industrial)
- Construction time: 9 months  $\rightarrow$  3 months
- Weight: ~ 200 kg  $\rightarrow$  ~ 130 kg
- Data: raw  $\rightarrow$  processed

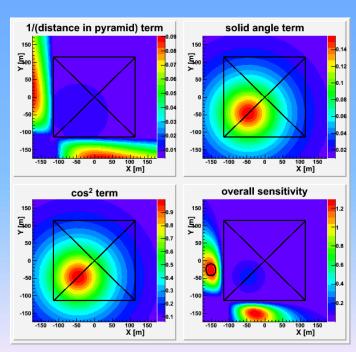


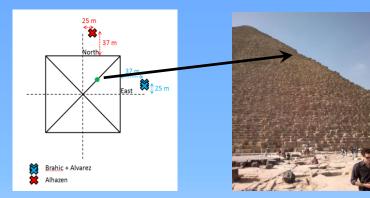


# **PREPARATION** @ SACLAY



### $\rightarrow$ Design, construction, integration, tests


Alhazen (n°1)




Brahic (n°3)



Simulation





**Challenge**: prove the performance of telescopes by detecting a 3m cavity in 20 m of limestone... at a distance of 150 m!

EJC Seminar | 24/09/2017 | 37

### **TELESCOPE TRANSPORTATION**



#### Alhazen



Saclay, April 19th 2016

#### **Brahic & Alvarez**



Saclay, May 19th 2016



#### University→Giza, May 30th 2016



Khufu pyramid, May 19th 2016



Cairo University, May 30th 2016





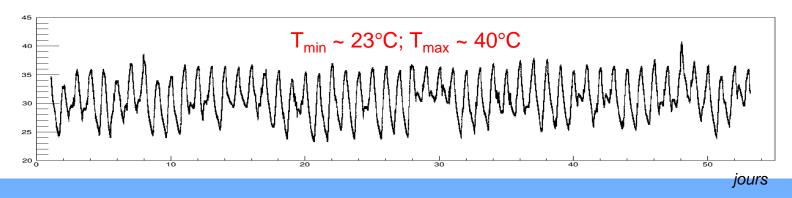
# **INSTALLATION @ GIZA**









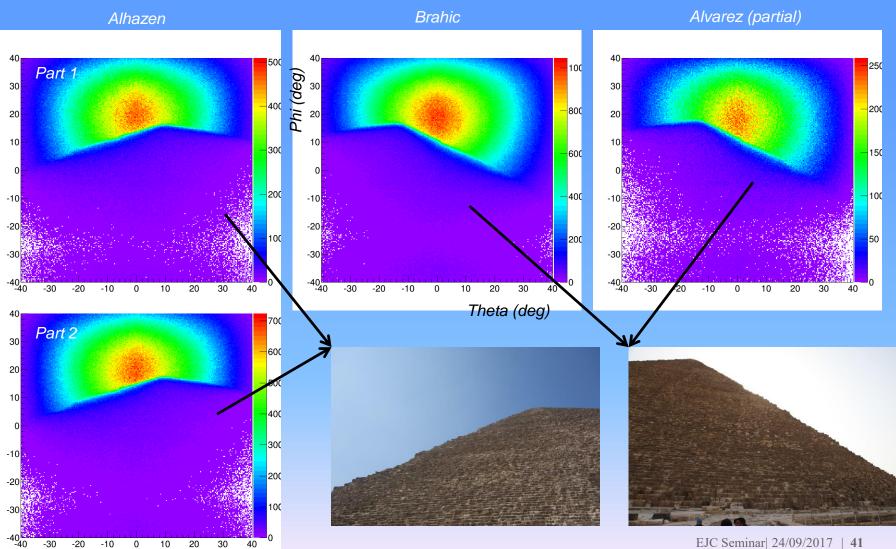





### MEASUREMENTS



- → Each telescope ran for 2-3 months (depending on gas autonomy)
  - Temperature evolution

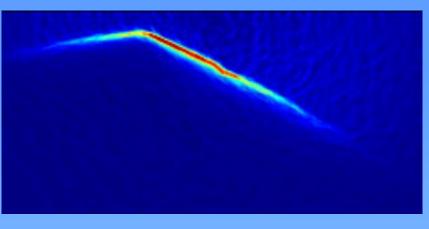


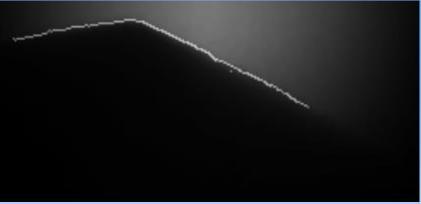

- $\rightarrow$  Stable acquisition, thanks to local team (3G, gas, maintenance)
- $\rightarrow$  Excellent spatial resolution =>  $\leq$  1 m accuracy at 150 m
- $\rightarrow$  Integrated statistics:
  - Alhazen (North): 30.8 million triggers (4.5 Hz)
  - Brahic (East): 24.6 millions (4.2 Hz)

~70% are « good » muons

- Alvarez (East): 18.7 millions (3.3 Hz)
- → Issues with Alvarez telescope (degraded data because of a faulty detector)

#### → Muography obtained from angular parameters of each muon



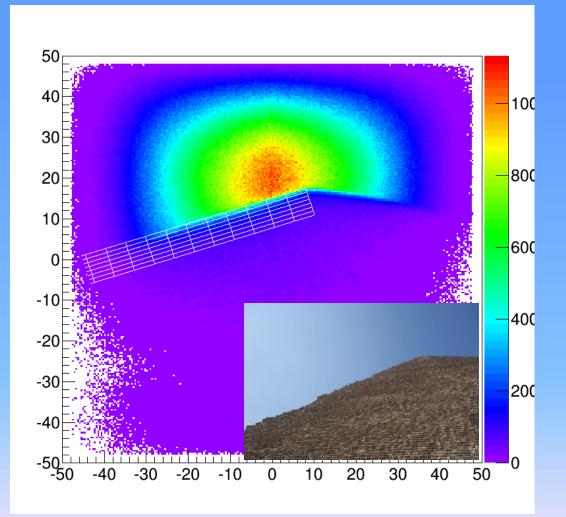








#### $\rightarrow$ Option 1: try to look at local variation of opacities through gradient images

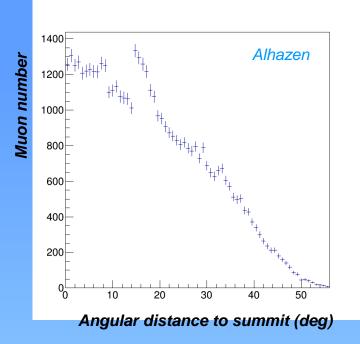





→ can reconstruct the pyramid profile, but not very sensitive technique





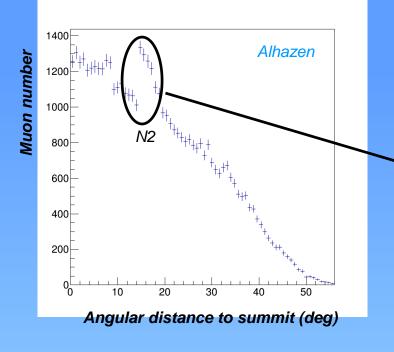

#### $\rightarrow$ Option 2: look for muon excesses within slices parallel to the edge







#### → First, superficial slices show various notches along the edge

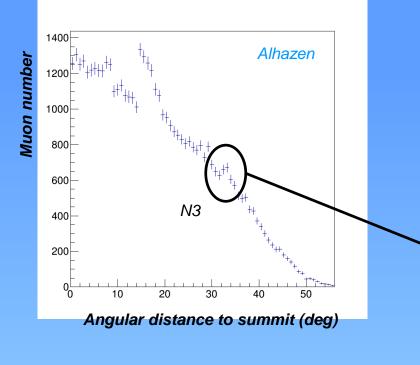









#### → First, superficial slices show various notches along the edge

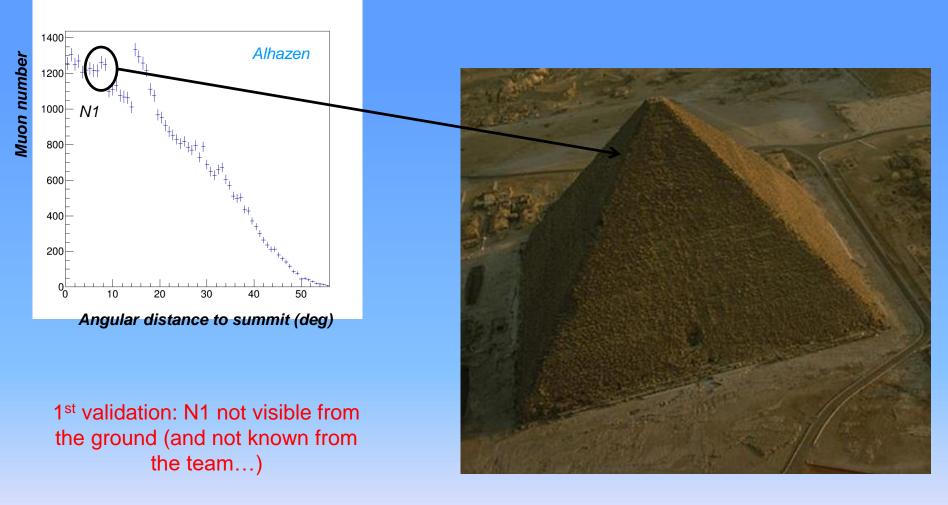









#### → First, superficial slices show various notches along the edge

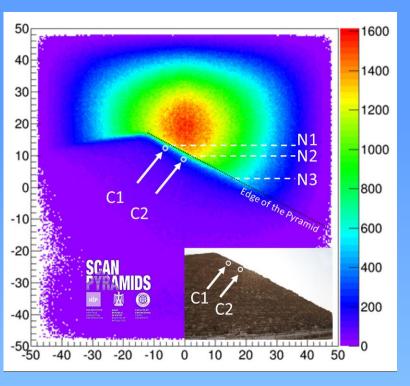









#### First, superficial slices show various notches along the edge



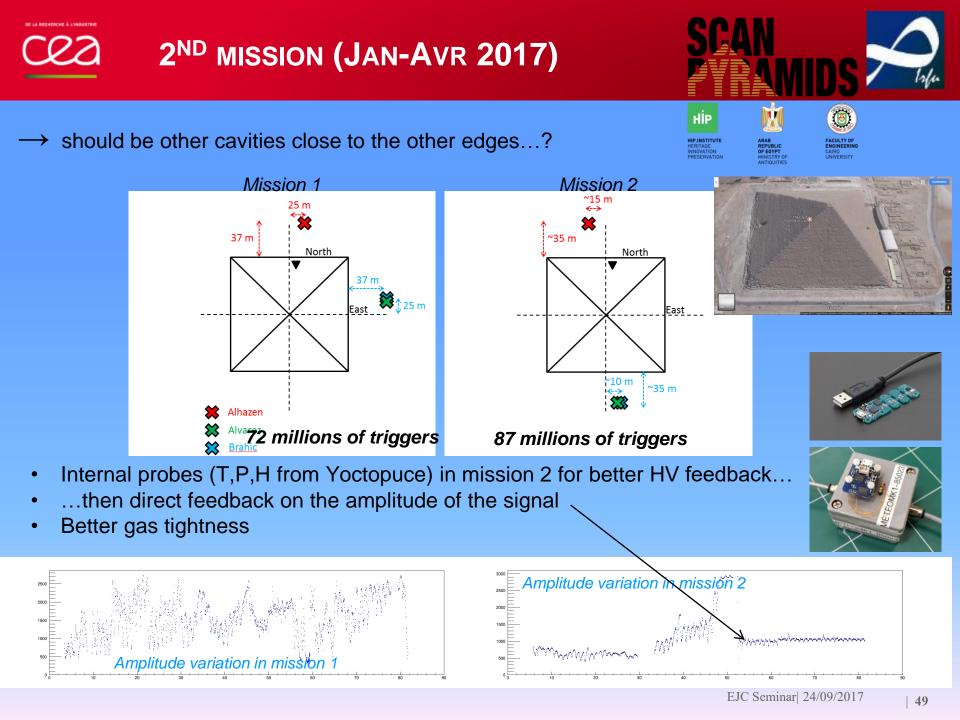

→ Brahic & Alvarez see the same, 3 notch structure

#### OF LA RECHERCHE À CINQUETRI

# **RESULTS (RELEASED ON OCT. 15<sup>TH</sup>, 2016)**






→ Discovery of another cavity by Nagoya University behind the North face chevrons

- Validated performance on N1 and C2
- Discovery of C1

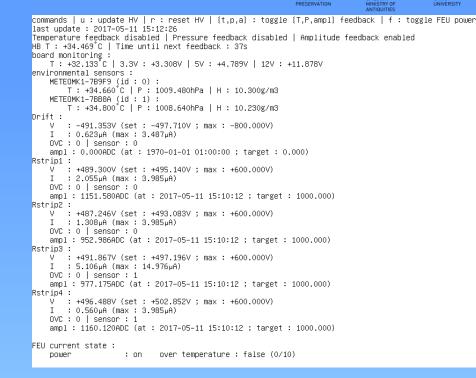
⇒ Next question: what was the purpose of these cavities?

Probably linked to the construction of the pyramid





# 2<sup>ND</sup> MISSION (JAN-AVR 2017)




НİР

HIP.INSTITUTE

automatic amplitude feedback integrated in the SlowControl

- Amplitude feedback
  - Voltage dependence on signal amplitude itself
  - $U(t + \overline{\Delta t}) = U(t) \alpha(S(t) S_T)$
  - Use online tracking to filter computed amplitude



→ relatively smooth data taking, but Spring not better than Summer...



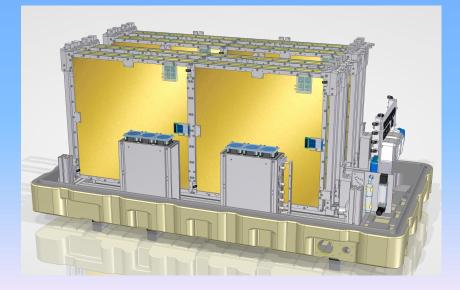


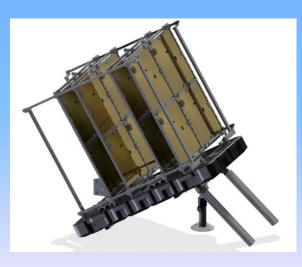




### $\rightarrow$ Investigate 2 major upgrades for potential future missions

• Sealed or semi-sealed detectors (no gas consumption)





• Larger telescopes (0.25 -> 1m<sup>2</sup>)



ΗİΡ

HIP.INSTITUTE HERITAGE INNOVATION PRESERVATIO









### WORKSHOPS



#### → TomoMu setup

• Can work both in deviation, transmission & absorption

#### $\rightarrow$ Will see how to operate it

- Settings of HV, self-trigger parameters (multiplicity, thresholds)
- Effects of environmental conditions, feedback
- Signal characteristics (amplitude, TOT, timing, etc), clustering
- Track reconstruction
- Imaging in various modes

→ You are encouraged to propose experiments!



