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Theoretical basics and modern status of radioactivity studies

Lecture 3: Some theory




Long lifetimes

—
-

y transitions may
compete with particle
emission from excited states

-
B decays may
compete with
a, p, 2p radioactivity

Radioactivity Resonant phenomena
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Particle mass methods
In-Flight separation tracking

Neutron resonances
Stopped/transported beam Decay in flight by time-of-flight (TOF)



Quasiclassical WF J

Particle decay. Gamow theory |
Y(r) ~ S
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Particle decay. Gamow theory
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[ Strange, but for majority of situations } [

e ! R Geiger-Nuttal law
this is precise within few percent g }




Beta decay. Gamow-Teller
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Beta decay. Gamow-Teller

In2 Gy m A =Ga/Gy = —1.268 £0.002 (\* = 1.608 & 0.004
W=-—=—5—Bor f(AZQ) a/Gy ( )
1/2 T Q = ' —m, is the energy release in the reaction
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For Q ~ 10 m, lifetime of the For Q ~ 1.1 m_ lifetime of the
tens of milliseconds is expeced . order of years is expected




Electromagnetic decay. Nuclear isomers

{ “Phase space” isomers } [ Angular momentum }
isomers
[ I' ~E3 for EI transitions } Ve ~
E* (MeV) J* Ty
[ I' ~E> for E2 transitions ]
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EG
E2 If the system change shape it
is likely that gamma lifetime
P o | abruptly increases




Particle decay
Resonance phenomena



Nuclear dynamics vs. excitation energy

A “Phase volume”
E * dynamics — only initial

state is important

Transition region —
resonances are broad

[ Resonance phenomena }

[ Radioactivity ]

Haloes ]

{ “Normal nuclei” }




Nuclear dynamics vs. excitation energy

4 N

From formal dynamics
point of view there is no
clear borderline between
resonance phenomena
and radioactivity

g /

From formal structure
point of view there is
no clear borderline
between stationary and
qguasistationary states
(radioactivity)




is not comfortable for
radioactivity studies

Resonances in elastic scattering {

Elastic scattering formulation }

(H — EYOx(®) = (T + V™ + V< — E)®y(r) =0,
Ci(r) =4m ) ik k) ) Y ()Y (),

p1(kr) = %[(Gz(kf’) — i Fi(kr)) = S/(Gy(kr) + i Fy(kr))].
@i(kr) = exp (i8;)[ Fi(kr) cos(8;) + G, (kr) sin(§;)].

At resonance energy E,,

SI(E,) = e2O(E) _ 22 (Pl(kl”) =1 Gl(kr)

Elastic cross section 47 :
Phase shift o(E)=90° has peak o —= ﬁ Zl:(QZ + 1) Sm2(52)

Internal normalization - / k . o
NiE.R) = dr|ve(r)|”
has peak 1 ) A Ve (T)]



Resonance in elastic “Normal

resonance” Phase shift pass 90° (magenta)

in elastic scattering under barrier
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Two expressed peaks There is WF

J @) ke 1 Peaks above concentration in the

barrier WF is not passing 90° interior ONLY for
from below the first peak
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Total “transparency”
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WF concentration is provided by
“Shallow water (i) small velocity above the “step” and
resonance” (ii) Interference of the waves reflected from origin
and from the right part of the step
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R-matrix formalism

Elastic scattering formulation is not
comfortable for radioactivity studies

[ Preexponent } [ Exponent }

Gamow approach has problems (i) only
probabilities no amplitudes (ii) width

)
I, (E) =2y°P,(E, R, Z, Z,). behave wrong on top of the barrier

P(E R.Z\2,) — kR
AT B2 (), kR) + G2(n, kR)
, 5 _ 1y (kR)] [ Strong Coulomb, | =0 ]
y _
WL = 2MRz fo dz | (kxR)| Ly
Eker) 20 eyt Gy M0 kD
2l + 1),
Dimensmn energy ,
limiting width — Wigner | | Dimensionless Comgrr [+ 1) @ 410 . (490G,
limi structure factor —omm 1
imit Co= 2nne=2" 1%
0 S|
M Z]_Zza
= =7.7
[ No Coulomb, | =0 } N=Z1Z2Q |7p = ——
I' ~ 1/T inverse flight time I' ~ exp[-27mn] - the same as

through nuclear interior for Gamow approach




R-matrix phenomenology

|

Description of

elastic/inelastic scattering

Effects of broad
levels

Effects of
structure

} O(E) = arctan [

['(E)
2(EE)

For broad states the energy-dependent corrections to re-
duced width are provided in terms of “level shift function”

Si(F) (Lane and Tomas, 1958):

F
S(E,R,Z:7,) = kR-

v = 7/ [1++7dSi(E)/dE]

(kR)F!(kR) + G1(kR)G!(kR)

FZ(kR) + G} (kR)

In applications of the R-matrix theory the dimension-

less reduced width is identified as phenomenological spec-

troscopic factor

0> — S =

Al
AL 1A,!

R
/ dr |(A| Ay, As)|?
0
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In contrast with
normalizations of WFs
spectroscopic factors are
overlaps and their norm
could be larger than 1

J




Bohr’s compound nucleus theory
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Kinematical
limit. QM cross
section for
spinless particles
cannot be larger /

%)= G Qo + D

!

T

Statistical factor —
QM mantra: sum
over the final states,
average over initial

!

(2] +1)

-~

Ingoing and
outgoing
channels

~

/

Ca (Ea)Tp (Ep)

/ Compound state \

resonance is like a pool
with attached pipes.
Each pipe is a decay
channel. Pool can be
filled via one selected
pipe, but the water is

coming out via all
opened pipes.

+ 1) (E —Eg)*—-T?/4

'/

Lorentian (Breit-
Wigner) profile
peak in the cross
section

- /

r=) T
4 N

Total resonance
width — sum of
partial widths

ON RESONANCE
- J




Decay states with complex energy

Time dependent WF
_ with probability
) (1, t) = expliEt — I't/2] @) (r;) exponentially

decreasing with time

(H—E) )W w)y=T+V -E)"r) =0

Im

E. =k/2M)=E, —il'/2, k =~k —il/Quv,) Complex energy
Hamiltonian
Applying Green’s procedure to the complex energy WF

W (Ot [(H — Er)\IJH')] —[(H — Er)\p(—l-)]hp(-l—) =0,

we get for the partial components at pole energy E, Green’s procedure for
5, (+) 5 (+)x complex conjugate
S oM | T dr? dr? !
“Natural” definition oh
(B (d g (DY _ (d g (B*) () width: for WF with
1ibi dr 71 dr wl / _R jl .
I' = m 5 =t = (3) pure outgoing

2Mi fo Wﬁ)] dr Ny asymptotic width is

outgoing flux devided
by normalization

(“number of particles”)
N = Npexp[—t/t] = Noexp[-T'1]. \in the internal region/

which corresponds to a definition of the width as a decay
probability (reciprocal of the lifetime):




Asymptotic of the decay WF

- Decay WF with complex
v (7”@, t) - exp[zEt - Ft/2] ) (7”@') energ:l/ shows unphyI:icaI

exponetial growth at large
energy

(H—E)UP@)=T +V — E)v (r) =

Im

E . =k/2M)=E, —il'/2, k ~k —il'/Quv,)

r>R

Dery "= H(ker) = Gylkor) + i Fy(k,r). e e P

above do not work in all time
YD&) "= exp [4+iker] & exp [+ik,r]exp [+T7/(2v,)] domain

Nuclear -
- orior Reaction
mechanism /" For decay of Radium with I

for resonance Q ~ 10 MeV and T,,~ 5000
population years the integral of the WF
in the outer part become

comparable with inner part

\ forr> 100 light years v

lern2)1” A

N

Exponential
growth

Computation to astronomical
radial scale are needed to see
decay WF in all its complexity




Quasistationary state

(H — E)Wy(r) = (T + V™ + veou — By, (r) = 0,

Wi (r) = dm Y i'kr) " tkr) ) Y (O Yin (),

Wi(kr) = %[(Gz(k?”) — i Fi(kr)) = Si(G(kr) + 1 Fi(kr))].

Sl(Er) — eQng(E,,) — eQiJ’r/Z — —1

vk r) "= iGykr)
~ (_i)lm(krr) . WI(krr)
Hn (S 1wk x)2dx) 2 N

(k) = |2 ANICD) _i& (ka, 1)
@1 — > E,r —E—?,F [\Ra 5

r(F)/2

-

on resonance

.

Quasistaionary WF is
normalized in internal region

J

Near resonance the radial
and energy degrees of
freedom are factorized

demonstrates how transition from discrete to continuous spectrum happens

[ WEF in this form combines properties of bound and scattering WFs and thus }




. Formulation
Integral formula for width (. Harada and . A. Rauscher, 1968

S. G. Kadmenskii and V. E. Kalechits, 1970.

[ Real Hamiltonian ] [ Auxilliary Hamiltonian ]

(H — E)Wg(r) = (T + V™ 4+ VUl — E)Wy(r) = 0, (H — E)®(r) = (T + V™ + VU — E)dy(r) =

_ 1 -1 * o1 ~
) = dw ) T 3 V@Y @) g S i a0 S 1 G

. i , 5 .
vi(kr) = %[(Gl(kr) — i Fy(kr)) — Si(G(kr) + i Fy(kr))]. oilkr) = Z1(Gi(kr) — i Fi(kr)) = Si(Gi(kr) + i Fi(kr))],
@i(kr) = exp (i8)[Fi(kr) cos(8;) + G (kr) sin(5)].

S(E) =) = 2= g Ok k)
r>R AET) = "7 R 22 NI

vk, r) iG(k, 1) (Jo 1vi(k,x)|?dx)

P [(H ~ D) 1 = DOEIE =0 [ Greents procedure
1 d d . /

o[ (V= V)¢ = [ ( Wz) ( SOz) Eb“l] : ) .

2M dr® Wronskian after partial
integration

R R
2M | @ (V — V)Ydr = 2MiN,1/2f oF(V — V)ndr
0 0

= exp (—ié;) cos(8)k, W(Fi(k, R) G,(k, R))



Integral formula for width

R
2MiN11/2[ @ (V — V)Udr = exp (—i&;) cos(8))k, [ Square both sides
0

Here flux is velocity and width is flux devided by internal
normalization

[ — vy N vy R
foR WJ(JF)‘zd” foR [l dr |Nzl/2|2,
2
4

v, cos2(8))

R
[0 o (V — V) dr

If we take point like Coulomb potential for auxiliary
Hamiltonian especially simple expression is obtained

v

P’y @/(r)

f g F;(n,kr}[ Vir)—
0

2
Analogous for expression for T matrix
- <plane wave | potential | real WF>

Useful technique. Works when integral is converged on the upper bound. This is
guaranteed if asymptotic behavior of real and auxilliary Hamiltonian are the same.




Time delay

Normalization for the scattering WF Eq. (1) inside
sphere of radius R > ry,. is (Wigner, 1955)

R
Ni(E, R) _/U dr|v g (r)|?

% {R + dé;gf;) — 2_1143 sin [2kR + 25;(15’)]} . (19)

It can be shown that the scattering process can be inter-
preted in terms of the time delay (Baz’, 1967)

Ti(E, R) = 2nN,(E, R) /. (20)
I'(E)/4 E,—E
T,(E,R) = 1+— 2mn—1) |.
ER =~ —prrreal e
i . ON resonance OF resonance
For radioactivity T~1/T T~ I/ (E-E,)?

scale widths I time is exponentially large time is exponentially small




Decay states with real energy

. e N\

nuclear reaction A+ B — F + R In AB channel we have BOTH

in and outgoing waves
_l_

U =Wap+ UL 5 g

(+) In FR channel we have ONLY

‘I/AB — wAleleBa Sl-DFH — w F Rd)H outgoing waves

. /

(ETAB — EAB) "l,bAB — (wAwB‘?lgpFR%
(Hrr— Brr) v = WrlVaz ).

(+)

Uap >> ‘I/FR For weak channel coupling we
_ can use static “source” function
(HFR — EFR) -g}{;rf,;'}% = ® in inelastic channel
Example - su?lden. removal CD(C], ri) — j d3r eldr W(r,r)
approximation

Instead of vector r we get vector ( of

Remove particle r from WF , .
P ¥(r,m) transferred momentum in the source



Different facets of resonance phenomenon

Generic idea

"N

Decays

Elastic scattering

Reactions

S-matrix

p-

Lorentian (Breit-Wigner) profile peak in the cross section

Lifetime } [ Exponentially growing WF long-range tail

Phase shift pass 90° ]

{ Delay time

WF concentration in the interior

Quasi

stationary WF

Pole

&

Separation of energy and radial degrees of freedom

Resonance is not

necessarily peak

|

Peak is not necessarily

resonance

|

Resonance
phenomena
v

[ Excitation modes ]




