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Long lifetimes  



Particle decay. Gamow theory 

Exponent Preexponent 

Quasiclassical WF 

Dimensionless 
structure factor 
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Dimension energy 
“limiting width” 



Particle decay. Gamow theory 

Geiger-Nuttal law 
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Γ = S𝛼 ω  𝑒𝑥𝑝 −2𝜋𝜂

 

ln 𝑇1/2 ~ 𝑎 + 𝑏 𝐸−1/2 

Preexponent 

Strange, but for majority of situations 
this is precise within few percent  



Beta decay. Gamow-Teller 



Beta decay. Gamow-Teller 

f ~ 1   for   Q ~ 2.4 me for   Q >> me   ->   f ~ Q5  

For Q ~ 10 me  lifetime of the 
tens of milliseconds is expeced   

For Q ~ 1.1 me lifetime of the 
order of years is expected 



Electromagnetic decay. Nuclear isomers 

Shape isomers 

Angular momentum 
isomers 

“Phase space” isomers 

G ~ E3   for   E1 transitions  

G ~ E5   for   E2 transitions  

                E* (MeV)        Jp                 T1/2   
 
180Ta            0                 1+           8         hours  
180mTa       0.07              9-           >1015  years 

 

l  

Erot 

Erot ~ J2 ~ l(l+1) E2 

E2 

E2 

E6 
If the system change shape it 
is likely that gamma lifetime 

abruptly increases 

E2 



Particle decay  
Resonance phenomena 



Nuclear dynamics vs. excitation energy 
“Phase volume” 

dynamics – only initial 
state is important 

“Normal nuclei” 

Haloes 

Resonance phenomena 

Radioactivity 

Transition region – 
resonances are broad 

E * 

r  



Nuclear dynamics vs. excitation energy 

E * 

r  

From formal dynamics 
point of view there is no 
clear borderline between 

resonance phenomena 
and radioactivity  

From formal structure  
point of view there is 

no clear borderline 
between stationary and 
quasistationary states 

(radioactivity)  



Resonances in elastic scattering Elastic scattering formulation 
is not comfortable for 
radioactivity studies 

Internal normalization  

has peak 

Elastic cross section 

has peak 

𝜑l(kr) = 𝑖 𝐺𝑙(𝑘𝑟)
 

Phase shift  dl(E) = 90o 



Resonance in elastic  
in elastic scattering 

Phase shift pass 90o (magenta) 

Lorentian 
profile peak 

in the 
internal 

normalization 
(red) 

Lorentian 
profile peak 
in the cross 

section 
(yellow)  

“Normal 
resonance” 

under barrier 



Joke 1 
Two expressed peaks 

WF is not passing 90o 
from below 

There is WF 
concentration in the 

interior ONLY for 
the first peak 

Peaks above 
barrier 

In reality – 
test for 
internal 

structure 



Joke 2 

Cross section 
dropdown to 

zero.  

Total “transparency” 

No scattering 
at all instead of 

very active 
scattering 



Joke 3 “Shallow water 
resonance” 

WF concentration is provided by 
 (i) small velocity above the “step” and  

(ii) Interference of the waves reflected from origin 
and from the right part of the step 



R-matrix formalism 

Exponent Preexponent 

Elastic scattering formulation is not 
comfortable for radioactivity studies 

Gamow approach has problems (i) only 
probabilities no amplitudes (ii) width 
behave wrong on top of the barrier  

Dimensionless 
structure factor 

Dimension energy 
limiting width – Wigner 

limit 

η =𝑍1𝑍2𝛼
𝑀

2𝐸
=  
𝑍1𝑍2𝛼

𝑣
 No Coulomb, l = 0 

Strong Coulomb, l = 0 

G ~ 1/T   inverse flight time 
through nuclear interior 

G ~ exp[-2ph]  -  the same as 

for Gamow approach 



R-matrix phenomenology 

Effects of 
structure 

Effects of broad 
levels 

In contrast with 
normalizations of WFs 

spectroscopic factors are 
overlaps and their norm 

could be larger than 1 

dl(E) = arctan
G(E)

2(Er−E)
 

Description of 
elastic/inelastic scattering 



Bohr’s compound nucleus theory 

Compound state 
resonance is like a pool 

with attached pipes. 
Each pipe is a decay 
channel. Pool can be 
filled via one selected 
pipe, but the water is 

coming out via all 
opened pipes. 

Ingoing and 
outgoing 
channels 

Statistical factor – 
QM mantra: sum 

over the final states, 
average over initial 

Kinematical  
limit. QM cross 

section for 
spinless particles 
cannot be larger 

𝜎𝛼𝛽(E) = 
𝜋

(𝑘𝛼)
2
 

(2𝐽 + 1)

(2𝐽𝛼1 + 1)(2𝐽𝛼2 + 1)
 
Γ𝛼 𝐸𝛼 Γ𝛽 𝐸𝛽

(𝐸 − 𝐸𝑅)
2−Γ2/4

 Γ  =  Γ𝑖 𝐸𝑅
𝑖

 

Total resonance 
width – sum of 
partial widths 

ON RESONANCE 

Lorentian (Breit-
Wigner) profile 

peak in the cross 
section  

a 

b 

g 

d 

etc… 



Decay states with complex energy 
Time dependent WF 

with probability 
exponentially 

decreasing with time 

Complex energy 
Hamiltonian 

Green’s procedure for 
complex conjugate 

“Natural” definition of 
width: for WF with 

pure outgoing 
asymptotic width is 

outgoing flux devided 
by normalization 

(“number of particles”) 
in the internal region 



Asymptotic of the decay WF 
Decay WF with complex 
energy shows unphysical 

exponetial growth at large 
energy  

For decay of Radium with    
Q ~ 10 MeV and T1/2~ 5000 

years the integral of the WF 
in the outer part become 

comparable with inner part 
for r > 100 light years  

Computation to astronomical 
radial scale are needed to see 
decay WF in all its complexity 

Reason – simple Ansatz 
above do not work in all time 

domain 

Nuclear 
 interior 

Exponential 
growth 

Reaction 
mechanism 

for resonance 
population 



Quasistationary state 

Quasistaionary WF is  
normalized in internal region 

Near resonance the radial 
and energy degrees of 
freedom are factorized 

on resonance 

WF in this form combines properties of bound and scattering WFs and thus 
demonstrates how transition from discrete to continuous spectrum happens  



Integral formula for width 
Formulation  
K. Harada and E. A. Rauscher, 1968. 
S. G. Kadmenskii and V. E. Kalechits, 1970. 

Real Hamiltonian Auxilliary Hamiltonian 

Green’s procedure 

Wronskian after partial 
integration 



Integral formula for width 

Square both sides 

Here flux is velocity and width is flux devided by internal 
normalization 

If we take point like Coulomb potential for auxiliary 
Hamiltonian especially simple expression is obtained 

Useful technique. Works when integral is converged on the upper bound. This is 
guaranteed if asymptotic behavior of real and auxilliary Hamiltonian are the same. 

Analogous for expression for T matrix 
- <plane wave|potential|real WF> 



Time delay 

For radioactivity 
scale widths G 

ON resonance 
T ~ 1 / G 

time is exponentially large 

OF resonance 
T ~  G/ (E-Er)

2 

time is exponentially small 



Decay states with real energy 

Φ 

Φ 𝑞, 𝑟𝑖 =  𝑑
3𝑟 𝑒𝑖𝑞𝑟 Ψ(𝑟, 𝑟𝑖)

 

In AB channel we have BOTH 
in and outgoing waves 

In FR channel we have ONLY 
outgoing waves 

>> For weak channel coupling we 
can use static “source” function 

in inelastic channel 

Example – sudden removal 
approximation 

Ψ(𝑟, 𝑟𝑖)
 Remove particle  r  from WF  

Instead of vector  r  we get vector q of  
transferred momentum in the source  



Different facets of resonance phenomenon 

Generic idea 

Elastic scattering 

Lorentian (Breit-Wigner) profile peak in the cross section  

Delay time 

WF concentration in the interior 

Separation of energy and radial degrees of freedom Quasistationary WF 

Reactions 

Phase shift pass 90o 

Decays Exponentially growing WF long-range tail 

Resonance 
phenomena 

vs  

Excitation modes 

Resonance is not 
necessarily peak 

Peak is not necessarily 
resonance  

Lifetime 

S-matrix Pole 


