Leonid Grigorenko

Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research Dubna, Russia

Theoretical basics and modern status of radioactivity studies

Lecture 5: Nonresonant phenomena. Astrophysical applications

Halo and excitation modes

Excitation MODES idea is introduced to describe strong enhancements of various cross sections connected ONLY with initial structure and reaction mechanism. This is in sharp contrast with RESONANCE phenomena, which should be, by definition, insensitive to initial conditions and method of population.

Nucleon halo

$$\Psi(\mathbf{r}) = \Psi(r, \Omega) = \sum_{lm} \frac{\chi_l(\rho)}{r} Y_{lm}(\Omega) \,,$$

$$\chi_{l=0}(r) \stackrel{r \to \infty}{\sim} \exp(-kr), \quad k = \sqrt{-2ME_T}$$

Nuclei near driplines can form kind of planetary system consisting of compact "core" and "valence" nucleons remotely orbiting it and residing mainly in classically forbidden region

"Haloism coefficient"

$$H = \frac{\langle R_{N-CM}(halo) \rangle}{\langle R_{N-CM}(core) \rangle}$$

¹¹Be H = 2.41¹¹Li H = 2.27

> ⁶He H = 1.81⁸B H = 1.77

⁶Li H = 1.62

⁸Li H = 1.55

Nucleon halo. Borromean nuclei

$$\begin{split} \Psi(\mathbf{X},\mathbf{Y}) &= \Psi(\rho,\Omega_{\rho}) = \sum_{K\gamma} \frac{\chi_{K\gamma}(\rho)}{\rho^{5/2}} \mathcal{J}_{K\gamma}(\Omega_{\rho}) \,, \\ \chi(\rho) \stackrel{\rho \to \infty}{\sim} \exp\left(-\varkappa\rho\right), \quad \varkappa = \sqrt{-2ME_T} \,. \\ A \quad (A-1) + N \quad f = \mathbf{E}_r \\ E_T &= -S_{2N} < \mathbf{0} \quad S_N > \mathbf{0} \quad (A-2) + 2N \end{split}$$

Major example: soft dipole mode

Proposed by Ikeda in 1988

Estimate of soft dipole mode in on-neutron halo system

$$\phi_{l=0}(r) = N [\exp(-k_1 r) - \exp(-k_2 r)], \quad k_1 = \sqrt{2ME_b},$$

$$M_{E1}(E) = \int_0^\infty dr \, (pr) \, j_{l=1}(pr) \, r \phi_{l=0}(r) \,, \ p = \sqrt{2ME} \,,$$
$$\frac{dB_{E1}}{dE} \sim \frac{|M_{E1}(E)|^2}{\sqrt{E}} \,.$$

Soft dipole mode in two-body and three-body continuum

Soft dipole mode in ¹⁷Ne

- L.V.Grigorenko, K.Langanke, N.B.Shul'gina, M.V.Zhukov, PLB 641 (2006) 254.
- Very expressed soft dipole peak has been predicted for ¹⁷Ne
- For the recent results on GSI S318 experiment

T. Oishi, K. Hagino, and H. Sagawa PRC 84, 057301 (2011) "Effect of proton-proton Coulomb repulsion on soft dipole excitations of light proton-rich nuclei"

Soft dipole mode in ⁸He

- Large uncertainty in the 2⁺ ⁸He state energy *E*(2⁺) = 2.7 - 3.6 MeV
 D.R. Tilley et al. NPA 745 (2004) 155
- "Standard" R-matrix: energy ~3.6 MeV and Wigner limit width ~0.6 MeV
- Low-energy events are not reproduced in any of the cases
- E1 contribution can modify the positions of
 2+ state up to about 3.9 MeV

Corrected first 2⁺ states position in ⁸He

M.S.Golovkov et al., PLB **672** (2009) 22 L.V. Grigorenko et al., Part. Nucl. Lett. **6** (2009) 118

IsoVector Soft Dipole Mode in ⁶Be

⁶Li \mathbf{k}_{Li} ⁶Be \mathbf{k}_{2} \mathbf{k}_{x} p_{2} \mathbf{k}_{x} p_{1} ^{Be} c.m. ^{Cryogenic} ^p target \mathbf{k}_{3} \mathbf{k}_{x} \mathbf{k}_{x} p_{1} ^{Be} c.m. ^{Cryogenic} ^p target \mathbf{k}_{3} \mathbf{k}_{x} \mathbf{k}_{x} p_{1} ^{Be} c.m. ^{Cryogenic} ^{Cryogenic} ^p target \mathbf{k}_{3} \mathbf{k}_{x} $\mathbf{k$

A.S.Fomichev et al., PLB **708** (2012) 6.

- Large cross section above 2⁺ and no resonance
- → ΔL = 1 identification –
 some kind of dipole
 response
- No particle stable g.s. can not be built on spatially extended g.s. WF
- Built on the spatially extended ⁶Li g.s.

Experimentally observed and theoretically discussed: IVSDM as a specific form of SDM

Astrophysical applications

For astrophysical application knowledge of BOTH resonant and nonresonant radiative capture cross sections can be needed depending on specific situation. While RESONANT radiative capture requires the knowledge of resonance properties only, for understanding of nonresonant capture studies of excitation modes are required

Modes of (2p) radioactive capture

Resonant radiative capture

Nucleosynthesis: Saha (chemical balance) equations

$$\dot{Y}_{A+1}^{(i)} = N_A \rho \langle \sigma_{p,\gamma} v \rangle_i Y_p Y_A - \Gamma_i Y_{A+1}^{(i)}$$
$$\dot{Y}_{A+2} = (1/2) N_A^2 \rho^2 \langle \sigma_{2p,\gamma} v \rangle Y_p^2 Y_A$$

$$\langle \sigma_{p,p} v \rangle_i = \int v \sigma_i(E_{12}) w(k_{12}) d^3 k_{12}$$

$$w(k_{12}) = (2\pi m_{12}kT)^{-3/2} \exp[-E_{12}/kT]$$

$$\sigma(E) = \frac{\pi}{k_{12}^2} \frac{\Gamma_{\alpha}\Gamma_{\beta}}{(E - E_R)^2 + \Gamma^2/4} \frac{2J_{2R} + 1}{(2J_1 + 1)(2J_2 + 1)}$$

$$\int_{-\infty}^{\infty} \frac{dE}{(E - E_R)^2 + \Gamma^2/4} = \frac{2\pi}{\Gamma}$$

 $\langle \sigma_{p,\gamma} v \rangle_i = \int v \sigma_i(E_{12}) w(k_{12}) d^3 k_{12} = \left(\frac{A_1 + A_2}{A_1 A_2}\right)^{3/2} \\ \times \frac{2J_{2R,i} + 1}{2(2J_I + 1)} \left(\frac{2\pi}{mkT}\right)^{3/2} \exp\left[-\frac{E_{2R,i}}{kT}\right] \frac{\Gamma_p \Gamma_\gamma}{\Gamma}$

Problem of resonant radiative capture is just time-reversed problem of radioactive decay

Two-Proton capture

$$\begin{aligned} \langle \sigma_{2p,\gamma} v \rangle &= \left(\frac{A_1 + A_2 + A_3}{A_1 A_2 A_3} \right)^{3/2} \frac{2J_F + 1}{2(2J_I + 1)} \left(\frac{2\pi}{mkT} \right)^3 \\ &\times \exp\left[-\frac{E_{3R}}{kT} \right] \frac{\Gamma_{2p} \Gamma_{\gamma}}{\Gamma_{3R}}. \end{aligned}$$

Need to know ONLY particle and gamma widths

Nonresonant radiative capture

$$(\hat{H} - E)\Psi_{E}^{(+)}(\rho, \Omega_{\rho}) = \hat{D}\Psi_{\text{g.s.}}(\rho, \Omega_{\rho}), \hat{H} = \hat{T} + \hat{V}_{cp}(\mathbf{r}_{cp_{1}}) + \hat{V}_{cp}(\mathbf{r}_{cp_{2}}) + \hat{V}_{pp}(\mathbf{r}_{p_{1}p_{2}}),$$

$$\frac{dB_{E1}(E)}{dE} = \frac{2J_f + 1}{2J_i + 1} \frac{1}{2\pi M} \operatorname{Im} \sum_{K\gamma}^{K_{\max}} \chi_{K\gamma}^{(+)*} \frac{d}{d\rho} \chi_{K\gamma}^{(+)} \Big|_{\rho \to \infty}$$

$$\langle \sigma_{2p,\gamma} v \rangle = \left(\frac{A_1 + A_2 + A_3}{A_1 A_2 A_3} \right)^{3/2} \left(\frac{2\pi}{mkT} \right)^3 \frac{2J_f + 1}{2(2J_i + 1)} \\ \times \int dE \frac{16\pi}{9} e^2 E_{\gamma}^3 \frac{dB_{E1}(E)}{dE} \exp\left[-\frac{E}{kT} \right]$$

For nonresonant radiative capture to halo nucleus we need to understand soft dipole excitations

Application to nuclear astrophysics

Competition between α and 2p capture

- > $^{15}O(2p,\gamma)^{17}Ne$ versus $^{15}O(\alpha,\gamma)^{19}Ne$
- > Densities (in g/ccm) at which the production rate of ¹⁷Ne by 2p-capture on ¹⁵O equals the production rate of ¹⁹Ne by α capture as function of temperature and α -particle mass abundance $X_{\alpha} = 4 Y_{\alpha}$.

Democratic decay

¹⁰He. Extreme importance of reaction mechanism

The resonance is, by definition, something insensitive to population conditions. However, when resonances become sufficiently broad, their OBSERVABLE properties may become sensitive to initial state properties and reaction mechanism details. Thus, such broad resonances may obtain properties characteristic for excitation modes. Broad ground state resonances are typical for democratic 2n decays of nuclei beyond the neutron dripline.

Geesaman et al.:

Furthermore, no incoherent sum of the processes considered here will fit the data. Perhaps a full three-body computation is necessary to understand the energy spectrum. Unfortunately, while the ⁶Be g.s. has a

p-p scatering length *a* ~ 30 fm

0.3

E∝,MeV

0.4

0.2

0.1

¹⁰He populated from ¹¹Li in a sudden removal model

Large center-of-mass recoil effects, population of different J^π

$$(\hat{H}_3 - E_T)\Psi_{E_T}^{JM(+)}(X, Y) = \Phi_q^{JM}(X, Y).$$
$$\Phi_q(\mathbf{X}, \mathbf{Y}) = \int d^3 \mathbf{r}_p e^{i\mathbf{q}\mathbf{r}_p}\Psi_{^{11}\mathrm{Li}}(\mathbf{X}, \mathbf{Y}, \mathbf{r}_p).$$

Abnormal radial extents for formfactors of excited states

¹⁰He populated in transfer and alpha removal from ¹⁴Be

PRL 109, 232501 (2012) PHYSICAL REVIEW LETTERS

Unresolved Question of the ¹⁰He Ground State Resonance

Z. Kohley,^{1,*} J. Snyder,^{1,2} T. Baumann,³ G. Christian,^{1,2,†} P. A. DeYoung,⁴ J. E. Finck,⁵ R. A. Haring-Kaye,⁶ M. Jones,^{1,2} E. Lunderberg,⁴ B. Luther,⁷ S. Mosby,^{1,2,‡} A. Simon,¹ J. K. Smith,^{1,2} A. Spyrou,^{1,2} S. L. Stephenson,⁸ and M. Thoennessen^{1,2}

 ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ⁴Department of Physics, Hope College, Holland, Michigan 49422-9000, USA
 ⁵Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
 ⁶Department of Physics, Concordia College, Moorhead, Minnesota 5562, USA
 ⁷Department of Physics, Gettysburg College, Gettysburg, Pennsylvania 17325, USA (Received 8 August 2012; published 4 December 2012)

The ground state of ¹⁰He was populated using a 2p2n-removal reaction from a 59 MeV/u ¹⁴Be beam. The decay energy of the three-body system, ⁸He + n + n, was measured and a resonance was observed at E = 1.60(25) MeV with a 1.8(4) MeV width. This result is in agreement with previous invariant mass spectroscopy measurements, using the ¹¹Li(-p) reaction, but is inconsistent with recent transfer reaction results. The proposed explanation that the difference, about 500 keV, is due to the effect of the extended halo nature of ¹¹Li in the one-proton knockout reaction is no longer valid as the present work demonstrates that the discrepancy between the transfer reaction results persists despite using a very different reaction mechanism, ¹⁴Be(-2p2n).

⁶Be example from MSU

