Interesting effects in well-known reactions and decays

The LOHENGRIN fission fragment separator

P. Armbruster et al., Nucl. Instr. Meth. 139 (1976) 213.

Thomson 1910: parabola mass spectrograph

Electric field parallel to magnetic field

Figure 1.5 Parabola mass spectrograph constructed by 1.1. Thomson (1910) with a discharge tube as ion source, a superimposed electrical field and a magnetic field oriented parallel to it for ion separation, and a photoplate for ion detection. (H. Kienitz (ed.), Massenspektrometrie (1968), Verlag Chemie, Weinheim, Reproduced by permission of Wiley-VCH.)

1912: Neon consists of two isotopes with mass 20 and 22

Interesting effects in well-known reactions and decays

Understanding fission yields of ²³⁶U

Fission Fragment U-235 U-235 Fission Fragment Fission Fragment Fission Fragment Fission Fragment Fission Fragment

A nuclear chain reaction

A single-pulse neutron source

Prompt neutron kinetics

Prompt neutron lifetime τ_p is the average time between the birth of prompt fission neutrons and their final absorption.

Assumptions:

```
-No delayed neutrons
-Infinite reactor, multiplication factor k_{\infty} = k
```


Prompt neutron kinetics

$$\begin{split} \tau_p &= \tau_s + \tau_d = \text{slowing down time + diffusion time} \\ \text{In thermal reactors: } \tau_s << \tau_d, \text{ i.e. } \tau_p \cong \tau_d \\ \tau_d \cong \lambda_a / v \cong 10 \text{ cm / } (2000 \text{m/s}) \\ \tau_p \cong \tau_d \cong 50 \text{ } \mu \text{sec} \end{split}$$

Example: step of reactivity from k=1.000 to k=1.001

"Prompt" control is not possible!

Neutron lifetime, taking into account delayed neutrons

Now for step from k=1.000 to k=1.001

 $T=\beta \tau_{delaved}/(k-1)=80$ seconds

Delayed neutron emission from fission products

Thermal neu	itron in	duced	fissio	ר	5	
	CS 53 m	135 2:10 ⁴ a ^{p= 0:2} ^{no +} 0 = 0	CS 19 s	136 13.16d 8*0.3 0.7 7 #19 1048_ 0.1.3	Cs 137 30.08 a β ⁻ 0.5, 1.2 γ (284) m, g c 0.20 + 0.07	235U
 محمر !::. بحس	Xe 10.4	134 357 + 0.26	Xe 15.3 m ^{Iγ 627} β ⁻ γ (707) β	135 9,10 h 1 ⁷ 0.9. 7250 200	Xe 136 8.8573 o 0.26	
<u></u>	9 s. 16 913, 647 74	33 20.83 h 15 1	1 1 3.5 m μ 2.72, 44 β ⁻ 2.5 γ 647, 584 234	34 52.0 m 52.0 m 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	I 135 6.61 h p ⁻ 1.5, 2.2 y 1260, 1132 1678, 1458 g, m	

Delayed ne yields	eutron	14237 14237 14237 14231	FTF	
²³⁵ U(n _{th} ,f) ²³⁹ Pu(n _{th} ,f)	1.62% 0.63%	0,112 0,112 0,223 0,233 0,234 0,234 0,234 0,238 0,238 0,238 0,238 0,238	- FTFTFTFTFT	00
²³⁸ U(n _f ,f) ²³⁹ Pu(n _f ,f)	4.39% 0.63%	6/,237 12/,237 12/,738 12/,738 12/,738 Ng/237 Ng/237 Ng/238 Ng/238	TETETET	

instruger.	ΓF.	11,682 (H/H	Wyene) Field	However and the second	144	1411	UNDERS.	
34737	10	1.1140.237			4.004	1,000	4.040	
15.731	14					T 1980		
190731	16	0.14-01-14				1140		
11 232	15		1.10.00			0.000	0.616	
11 212	Li.					0.410	0.000	
11 223	14.	0.00700.0221	1.1842.00		0.00	DATA	0.7467	
11 231	16.	0.2000.0000		0.22540.043	0.000	0.711	0.6421	
11 754	141				10.00	1.641	1.26	
11 734	iŵ.	1 2000 110				UNIT	1.204	
11 238	14	1.023040.050	1.0749-07		1.004	1.670	1.670	
11.238	tie.	10070010000	and the second s		1.0%	TROT	1,4953	
11.736	14	i farmanoccent				17 (541)	2:300	
D THE	Li i	2/2140/2007				2.198	2.200	
LI 237	17	"and the second second				3.540	52,0846	
11 237	i inte					3,309	3.995	
12 130	14		4.80+0.26		4.000	4.7687	A.800	
11 238	Lù-	4,3040,900			4,642	4.6/18	4.7918	
No.137	17	1.00000 100	1.0710.10		0.000	1,200	1.1891	
No.237	E.			1.2216.039		1.139	1.059	
50.738	14			2512021		2.156	10,004	
NaPE	Li I					2.191	27,1064	
Po236	1	0.000000000	15.4040.07	hingspress.		0.421	0.410	
Puzzili	1	3.4746.050		11.40600320		0.478	0.616	
Puzzle	ι÷r.	0.6260-0.000	18.6540.05		11/045	0.855	0.646	
Po238	1	0.63+0.016			0.644	0.650	6.642	
PLOND .	1.4	And and a second second	8.9010.09		0.000	0.800	0.900	
PLOND	1	d.Med.JBD		13110.041	0.667	6.687	0.687	
PA241	12	1.62+0.11D	1.3740.18	100000000	1.570	1,886	1,820	
Puzzet	1.4	1.52+0.110		13040,000	1.564	1,608	1.818.	
Pu242	1	100000000	1,00±0.00			1,830	3,970	
PL042	#	32141288				1,622	1,9521	
Am241	1	100000000	8.4440.00		1 1	0.427	6.427	
Arti241	10			1030450.024	1 1	0.416	0.616	
Are24254	1		IA09H0.05		- 1	12.658	0.090	
Xex242M	18					0,649	10998	
Art2KI	11					0.850	0.796	
Art240	P					0.640	0.7757.	
-Cm245	1		0,1950.04			0.640	0,500	
Cei245	16					0.636	0,5688	
1053481	T.		\$12740.02			0.280	1.120	
0051	111					0.753	1 million (1997)	

Xenon equilibrium concentration

The anti reactivity increase prevents restarting of the reactor if a large enough positive reactivity reserve is not available!

¹¹Li production in thermal neutron induced fission?

The first nuclear reactor

In nuclear reactors a NEGATIVE FEEDBACK is very POSITIVE (=good/useful)!

Detection of rare ternary particles

¹¹Li production in thermal neutron induced fission?

	²³⁵ U	+	n	⇒	¹¹ Li	+	¹³⁴ Te	+	⁹¹ Rb	
A	235	+	1	=	11	+	134	+	91	•
Z	92	+	0	=	3	+	52	+	37	
ΔM (MeV)	40.919	8	8.071		40.72	28	-82.536		-77.745	
Q (MeV) =	(40.919	9 + 8	3.07 [.]	1) —	(40.7	28 –	82.536 -	- 77	7.745) =	+168.5
•	-(C		C			

ions performed for UOx (3.25%) at 33GWd/t (3. Pav Tritium Formation in UOx fuel element	Contribution
Direct production from Ternary Fission	81,94 %
ndirect Production from ⁴ He Ternary Fission: • ⁴ He → ⁴ U + β • ⁴ U + n → ⁴ He + ³ H (d=941.3b)	11.50 %
ndirect ³ H production $^{3}H \rightarrow ^{3}He + \beta$ $^{3}He + n \rightarrow p + ^{3}H$ (a=5317b)	4.82 %
Reaction (n,3H) on ¹⁶ O: n + ¹⁶ O → ¹² N + ³ H	0.96 %
leaction (n, ³ He) on ¹⁶ O: • n + ¹⁶ O → ¹¹ C + ¹ He • ² He + n → p + ³ H	0.05 %

The accuracy of the tritium production could be improved by improving our knowledge on ⁶He ternary fission yields

O. Serot. JEFF 2014.

 ^6He ternary fission yield for $^{241}\text{Pu}(n,f)\text{:}~(4.48\pm0.30)~x~10^{-5}$

O. Serot. JEFF 2014.

Ternary fission models

Model (ref.)	$(A_{\rm H}, Z_{\rm H})$	(A_{L}, Z_{L})	D fm	dL fm	d _H fm	h fm	T MeV
[Rub88]	140Cs	86As(11	≈ 25	11.2	≈ 13.8	0	2.1
[Rub94, Rubch]	132Sn	94Sr	23.6	11.3	12.3	0	2.19
[Bau92b]	132Sn	94Sr	22.6	13.6	14.2	7.5	1.91
[PP94]	132Sn	94Sr	22.9	12.8	10.1	0	2.1(12
[Fau95b]	132Sn	94Sr	13.4	9.9	10.5	7.7	1.3
[Wös96]	132Sn(13	94Sr	22.4	10.8	11.6	0	(3.1)(14

Double neck rupture model (Rubchenya and Yavshits)

Modified double neck rupture model (Baum et al.)

ransition energy mod (Pik-Pichak)

Ternary fission models

(Faust and Bao)

Modified Halpern model (Gönnenwein and Wöstheinrich)

Universal parameterization

Comparison with measurement

"True ternary fission"

M. Bernas et al. PRL 67, 3661 (1991)

Calculation of allowed kinetic energy range

Ecole Joliot-Curie 2017

11

Cluster tripartition into ^{68,70}Ni refuted at 10⁻⁸ level

Fission product spectroscopy

Normal kinematics: n, p or light ions on heavy target

17⁻ isomer at 6.6 MeV in ⁹⁸Zr

Conversion electron spectroscopy at LOHENGRIN

Which nuclear data do we need for nuclear medicine?

- 1. Half-life
- 2. Gamma ray energies (roughly!)
- 3. Particle spectra (electrons, alpha)

B.Q. Lee et al., Int J Radiat Biol 2016 & Radiother Oncol 2016;118 Suppl 1:S66.

Which nuclear data do we need for nuclear medicine?

- 1. Half-life
- 2. Gamma ray energies (roughly!)
- 3. Particle spectra (electrons, alpha)
- 4. Cross-sections

Lu 176	Lu 177
2.6	6.7 d
σ 2100	β ⁻ 0.5 γ 208, 113 σ 1000

Bateman's nightmare – Phil Walker's dream

Thermal neutron capture cross-section σ_{th} Resonance integral I_{γ} In addition: Fast neutron cross-sections for (n,p), (n, α), (n,n')

^{177m}Lu(n,γ)^{178m}Lu

Lu 176		L	u 17	7	Lu 178		
2.5	599	7 m	160.44 d	6.647 d	22.7 m	28.4 m	
3.68 h β 1.2 1.3	3.8·10 ¹⁰ α β ⁻ 0.6 γ 307, 202	μ γ 1003	β 0.2 m ₁ lγ 414 319	β 0.5 γ 208 113	β ⁻ 1.2 v 332	β ⁻ 2.0 y 93, 1341 1310 1269	
7 88, e ⁻	a 2 + 2100	m2	g 3.2	a 1000	m ₁	9	

G. Beller et al. Phys Rev C71, 014603 (2006)

Inelastic neutron acceleration (INNA)

O. Roig et al. Phys Rev C71, 014603 (2006)

Measurement of burnup cross-section

O. Roig et al. Phys Rev C71, 014603 (2006)

Direct observation of INNA

E. Bauge et al. Eur. Phys. J A48, 113 (2012)

Having fun with a nasty fission product: ¹³⁷Cs

The double-gamma decay

First discussed by Maria Göppert-Mayer in her doctoral thesis in 1930

M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen (1930)

C Walz et al. Nature 526, 406 (2015)

The double-gamma decay

First discussed by Maria Göppert-Mayer in her doctoral thesis in 1930 *M. Göppert-Mayer, Über Elementarakte mit*

zwei Quantensprüngen (1930) Second order process (10⁻⁶ weaker)

well studied in atomic physics

M. Lipes et al., PRL 15, 690 (1965) P.H. Mokler et al., Phys Scr 69, C1 (2004) K. llakovac et al., Rad Phys Chem 75, 1451 (2006)

Unit of 2-photon-absorption: 1 GM = 10^{-50} cm⁴ s photon⁻¹ C Walz et al. Nature 526, 406 (2015)

E.

The double-gamma decay in nuclear physics

 $\begin{array}{l} \gamma\gamma\text{-decay only known in a special case:} \\ 0^+ \to 0^+ \begin{pmatrix} 9^0 \text{Zr}, \, {}^{40}\text{Ca}, \, {}^{16}\text{O} \end{pmatrix} \\ J. \ Schirmer \ et \ al., \ PRL \ 53, \ 1897 \ (1984) \\ J. \ Kramp \ et \ al., \ NPA \ 474, \ 412 \ (1987) \end{array}$

never observed in competition to allowed single γ -transition

W. Beusch et al., Helv Phys. Acta 33, 363 (1960) J. Kramp et al., NPA 474, 412 (1987) V.K. Basenko et al., Bull. Russ. Acad. 56, 94 (1992) C.J. Lister et al., Bull. Am. Phys. Soc. 58(13), DNP.CE.3 (2013)

main experimental obstacle: presence of the one-photon decay

C Walz et al. Nature 526, 406 (2015)

If

Basic principle of the experiment

•use radioactive ¹³⁷Cs -source: 16.3(5)µCi

The experimental setup & direct Comption scattering

- 72°: 5 detector pairs
- 144°: 5 detector pairs

C Walz et al. Nature 526, 406 (2015)

The experimental setup & direct Comption scattering

C Walz et al. Nature 526, 406 (2015)

The experimental setup & direct Comption scattering

72°: 5 detector pairs
 144°: 5 detector pairs

E₁ + E₂ = 662 keV
 Compton scattering
 double-gamma decay

C Walz et al. Nature 526, 406 (2015)

The experimental setup & direct Comption scattering

C Walz et al. Nature 526, 406 (2015)

Timing spectrum & random coincidences

C Walz et al. Nature 526, 406 (2015)

Time spectrum & random coincidences

C Walz et al. Nature 526, 406 (2015)

Time spectrum & random coincidences

Time spectrum & random coincidences

C Walz et al. Nature 526, 406 (2015)

C Walz et al. Nature 526, 406 (2015)

Results

C Walz et al. Nature 526, 406 (2015)

Ecole Joliot-Curie 2017

Results

C Walz et al. Nature 526, 406 (2015)

Critical analysis (1)

C Walz et al. Nature 526, 406 (2015)

Critical analysis (1)

C Walz et al. Nature 526, 406 (2015)

Critical analysis (1)

C Walz et al. Nature 526, 406 (2015)

Critical analysis (2)

C Walz et al. Nature 526, 406 (2015)

Critical analysis (2)

C Walz et al. Nature 526, 406 (2015)

Dependence of radioactive decay on external conditions?

The nuclear decay constant is a fundamental constant which cannot be changed by external, non-nuclear processes. E Rutherford and F Soddy, J Chem Soc Trans 81, 837 (1902)

Effects of temperature, pressure, electromagnetic fields, chemistry, etc. less than 1%. GT Emery, Ann Rev Nucl Sci 22, 165 (1972)

No dependence on season, moon phase, government, etc. However,

Results & comparison to QPM

C Walz et al. Nature 526, 406 (2015)

⁷Be: the lightest EC decaying isotope

Different implantation conditions

Systematics of ⁷Be decay rate measurements

P. Das and A. Ray, Phys Rev C 71, 025801 (2005).

1.5% record change of half-life in cooled fullerenes

Two-body beta decay

Y. Litvinov, GSI

Nuclear beta decay

Nuclear weak decay in general form:

 $n + \nu_e \leftrightarrow p + e$

i) continuum beta decay:

$$\begin{array}{l} n \rightarrow p + e^- + \bar{\nu}_e \\ p \rightarrow n + e^+ + \nu_e \end{array}$$

 $\beta^- - \text{decay}$ $\beta^+ - \text{decay}$

ii) two-body beta decay:

$$\begin{array}{c} p+e_b^- \rightarrow n+\nu_e \\ n \rightarrow p+e_b^- + \bar{\nu}_e \end{array}$$

Orbital electron capture (EC) Bound state beta decay $(\beta_{\rm b}^{-})$

 $p+e^- \to n+\nu_e$

Free electron capture

Y. Litvinov, GSI

Observation in Schottky frequency spectra

Bound-state beta decay

Y. Litvinov, GSI

Orbital electron capture decay of few-electron ions

Orbital electron capture decay of few-electron ions

Nuclear astrophysics: fusion well below Coulomb barrier

H. Costatini et al., Rep Prog Phys 72, 086301 (2009)

Electron screening in low-energy fusion reactions

cross-sections below Coulomb barrier significantly enhanced by electron screening:

 $f_{\rm lab}(E) = E(E + U_{\rm e})^{-1} \exp(\pi \eta U_{\rm e}/E)$

 U_e screening energy \approx 300 eV for d(d,p)t reaction when deuterium is embedded in metals

 U_e screening energy $\approx U_D$ from Debye model should scale with nuclear charge of target.

 $U_{\rm D} = 2.09 \times 10^{-11} (Z_{\rm t}(Z_{\rm t}+1))^{1/2} (n_{\rm eff}\rho_{\rm a}/T)^{1/2} ({\rm eV})$

 U_D = 21(6) keV predicted for Lu and 36(4) keV for PdLu_{0.1} alloy

K.U. Kettner et al., J Phys G 32, 489 (2006)

0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86

E, [MeV]

K.U. Kettner et al., J Phys G 32, 489 (2006)

Proposed scaling to low temperatures

One major reason of the present work, i.e. to extend screening tests up to $Z_t = 71$, was another prediction of the Debye model concerning radioactive decay of transuranic nuclides $(Z_t \ge 82)$ in a metallic environment [5]. In general, for the α -decay and β^+ -decay one expects a shorter half-life due to the acceleration mechanism of the Debye electrons for these positively charged particles similar as for the protons, deuterons or ³He in the fusion reactions, while for the β^- -decay and e-capture process one predicts a longer half-life (here, deceleration for the negatively charged particles). For example, if the α -decay ²¹⁰Po $\rightarrow \alpha$ +²⁰⁶Pb with E_{α} = 5.30 MeV and $T_{1/2i} = 138$ days occurs in a metal cooled to T = 4 K, one arrives at $U_D =$ $Z_a Z_l U_c (d+d) (290/4)^{1/2} = 2 \times 82 \times 300 \text{ eV} \times 8.5 = 420 \text{ keV}$, where we used again a typical value of $U_p = 300 \text{ eV}$ for the d+d fusion reaction in metals at T = 290 K. The enhancement factor then gives $f_{tab} = 265$, and thus the half-life is shortened to 0.5 days. For the biologically dangerous transuranic waste [12] ²²⁶Ra $\rightarrow \alpha + ^{222}$ Rn ($E_{\alpha} = 4.78$ MeV, $T_{1/2} = 1600$ years) an analogous calculation leads to $T_{1/2} = 1.3$ years. Experiments are in progress to test these predictions. If these predictions of the Debye model should also be verified, one may have a cheap solution to remove the transuranic waste (involving all an a-decay) of used-up rods of fission reactors in a time period of a few years. Finally, a reduced half-life of a-emitters such

K.U. Kettner et al., J Phys G 32, 489 (2006)

C. Qi et al. Phys.Lett. B734 (2014) 203.

Experiments invalidate application of Debye model !

- ^{22}Na in Pd at 12 K: 1.2(2)% faster β^+ decay vs. 11% predicted B Limata et al., Eur Phys J A 28, 251 (2006)
- ^{210}Po in Cu at 12 K: 6.3(14)% faster α decay vs. 1000% predicted F Raiola et al., Eur Phys J A (2007)

²⁵³Es in Fe at 4 K: 0.4(3)% faster α decay vs. 10^2 predicted ²⁵³Es in Fe at 50 mK: 1.4(6)% faster α decay vs. >>10⁶ predicted *N Severijns et al., Phys Rev C 76, 024304 (2007)*

 $^{224} Ra in Fe, at 1 K and 20 mK: <1\% effect on T_{1/2} \\ ^{225} Ra in Fe, at 1 K and 20 mK: <0.5\% effect on T_{1/2} \\ ^{227} Ac in Fe, at 1 K and 20 mK: <1\% effect on T_{1/2} \\ vs. effects of 10^4 to 10^{10} predicted by Debye model \\$ *NJ Stone et al., Nucl Phys A 793, 1 (2007)*

Theoretical arguments

Correct treatment of screening effects in tunnelling of alpha particles gives for 210 Po and 226 Ra at 4 K a predicted half-life increase of <0.1% with the Debye model and 0.9% and 1.3% with the Thomas-Fermi model.

N.T. Zinner, Nucl. Phys. A 781, 81 (2007)

Expected effect: -0.02% half-life change for ²⁴¹Am at 0.5 MBar

Decay losses in flight?

E. Bouchez et al. PRL 90, 082502 (2003)

R. Anne et al., Nucl. Instr. Meth. B70 (1992) 276.

E. Bouchez et al. PRL 90, 082502 (2003)

Resonant nuclear attenuation $\approx 1000 \cdot \text{non-resonant}$ attenuation

Nuclear resonance fluorescence

Recoilless nuclear resonance fluorescence

Mössbauer effect

1957 discovery of recoilless nuclear resonance 1961 Nobel Prize in Physics

Application of the Mössbauer effect

Interactions between the nucleus and its surrounding electrons...

...causing changes in the nuclear (and electronic) energy levels.

Mössbauer spectroscopy

Nuclear method proofs water was on Mars

Goethite contains hydroxyl (OH⁻) as a part of its structure.

 \rightarrow water

Acknowledgements

Thanks for useful slides and input from: Roger Brissot (LPSC Grenoble), Olivier Serot (CEA Cadarache), Boon Quan Lee (ANU Canberra), Norbert Pietralla (TU Darmstadt), Yuri Litvinov (GSI Darmstadt), Palle Gunnlaugsson (KU Leuven) and Philipp Gütlich (Univ. Mainz).

Summary

Physics close to stability remains exciting !

Very high resolution and/or sensitivity and good control of systematics are essential to study subtle effects.

New, astonishing effects may either indicate new physics, or they will disappear with better statistics and/or higher resolution.

Develop your own judgement !